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TRANSIENT HYDRAULIC SIMULATION: BREACHED EARTH DAMS
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-

Abstract: A conceptual method to alleviate flood damages due to over-
topping failures of small earthfill dams is the incorporation of a
relatively thin erosion retarding layer within the dam. This paper
investigates the reduction in the reservoir release due to the hypothet-
ical erosion retarding layer. In addition, the paper provides a method
for the determination of an optimal location of the layer so as to
minimize the maximum possible reservoir release due to a gradually
breached earth dam. The transient reservoir flow is simulated by a
numerical model, based upon the solution of the one-dimensional St.
Venant unsteady open-channel flow equations. These equations are
solved by the method of characteristics, with appropriate boundary
conditions incorporated into the solution procedure. The numerical
simulation model is used to determine the reduction in reservoir re-
lease due to a single retarding layer and its optimal location for a
wide range of pertinent geometric, hydraulic and dynamic parameters.
The sensitivity of .the results to variations in the above parameters

is discussed.

lResearch Assistant, Civil Engineering Department, University of
Missouri-Rolla, Rolla, Missouri 65401.
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INTRODUCTION

Numerous small homogeneous earthfill dams, up to approximately
100 ft. in height, have failed or are subject to possible failure
from over-topping because of inadequate spillways (iO, 31).2 Such
failures may cause considerable property damage and even the loss of
life. Inadequate spillways prevalent on many dams are generally due
‘to the lack of engineering consultation during design and constructioﬁ;
‘however, even with engineering advice, incomplete or unavailable
hydrologic data may result in the spillway being designcd for less
than the critical storm, resulting in the eventual failure or breach
of the structure. |

A conceptual method of alleviating downstream damages from
breached earth dams is to provide a relatively thin erosion retarding
layer at an optimal elevation within the dam. Thus, in the event of
an over-topping of the dam, the resulting breach would not develop con-
tinuously but rather be delayed by the hypothetical erosion retarding
layer. Such a controlled breach would produce two distinct flood waves
of a reduced amplitude compared to the single flood wave produced by
a breach of an earth dam without a retarding layer. Consequently, a
reduction in downstream damages would be obtained.

In thiss paper, the hydraulic characteristics of transient reser-
voir flow resulting from gradually breached earthfill dams are investi-

gated in order to ascertain the reduction of the flood wave peak due




to a retarding layer. This reduced flood wave peak discharge is shown
to be directly attributable to the retarding layer's effect in reducing
the reservoir outflow.

Basic assumptions concerning the geometric and dynamic aspects of
the phenomenon are made in order to develop a generalized numerical
simﬁlation model of the tramsient resérvoir floﬁ due to a breached dam.
An experimental model is used to verify the numerical model. The numer-
ical model is used tb determine the expected reduction in outflow due
to a single retarding layer for several pertinent geometric, dynamic,
and hydraulic parameters. Also, the elevation of the retarding layer
is optimized such that the maximum possible outflow from a gradualiy

breached dam is minimized.
THEORY

St. Venant Differential Equatéoné.‘- The basis for formulating a
numerical simulation model of the transient reservoir flow due to a
gradually breached dam is the premise that such a phenomenon is wéll-
approximated by the one-dimensional differential equations of gradually
varied, unsteady channel flow. These equations are attributed to
A.J.C. Barre' de Saint-Venant and are known as the ''St. Venant equations'.
They are derived in several references (5,11,15,25,27) and are simply

stated herein as

,3Y v dy _
3t + D % + v % 0..............................i..(l)

ov av oy

-5?"' v — + g ax+ g(sf-so) = 0..-o..................(Z)



in which y = the depth of flow in the channel, v = the average velocity
across a section of channel, D = the hydraulic mean depth which is equiva-
lent to A/T, T = the width of the free water surface, A = the cross-
sectional area, g = the acceleration due to gravity, x = the distance
along the channel, and t = the time. In this paper, the channel (reser-
voir) is prismatic, and So = the slope of the reservoir bottom which

is small aﬁd is approximated by sin 6, where 6 is the angle of inclina-
tion of the reservoir béttom with a horizontal datum line. Hydrostatic
conditions exist throughout the flowing fluid, and the resistance to
flow due to the shear force at the wetted perimeter P is accounted for
by use of Manning's equation for steady uniform flow. Thus, the fric-

tion slope Sf. which is the slopé of the energy grade line, can be

approximated by

4]3  Trttetertectesececiiiiiiiiiiean.. Ceeen

in which n = the Manning coefficient, and the hyd;aulic radius R = A/P.
Hence, the St. Venant equations, which are quasi-linear hyperbolic
partial differential equations, describe the transient flow within the
element of water that is bounded by two vertical cross sections shown

in Fig. 1. Eq. 1 is known as the "equation of contiﬁuity" and mathemat-
ically expresses the Law of Conservation of Mass of the incompressible
fluid within the element. Eq. 2, which is derived from Newton's Secon&
Law of Motion, is known as the 'equation of motion" and expresses the
Law of Conservation of Momentum of the fluid'within the element.

The initial condition of the flow within the reservoir, i.e. the

depths and velocities, must be known in order that solutions to the



FIGURE 1. ELEMENTARY CHANNEL REACH
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St. Venant equations may be obtained. The initial condition of tﬁe
flow may be steady gradually varied, unsteady gradually varied, or
steady uniform flow, etc.

Boundary conditions at the upstream gnd downstream extremities
of the reservoir are essential to the solution of the St. Venant equa-
tions. A boundary condition is a known relationship between any two
of the variables v, y, t and the flow rate Q thrbughout the time that
solutions to the equations are desired. The upstream boundary condition,
used in this paper, is a known relationship between Qu and t, i.e.
' Qu = Qu(t)' The downstream boundary is provided by a stage—discharge'
relationship, i.e. Qd = Qd(y). .The dowﬁstreaﬁ boundary is located
a short distange upstream of the breached dam at a section where the flow
is well-approximated as one-dimensional and the surface drawdown due
to the outflow through the spillway and breach is negligible.

Reservoir Geometry. - The reservoir cross section is assumed trape-
zoidal with side slopes of l:Qertical to z:horizontal, as shown in
Fig. 2. Only the prismatic portion of the idealized reservoir shown
in Fig. 3 is considered to contribute to the outflow released by a
breached dam. The storage in the‘upper reaches of the reservoir pro-
vides little ccntribution to the outflow since accumulated sediment
deposits soon reduce this storage to a negligible quantity. Thus, the
upstream boundary is located at the upper end of the prismatic reser-
voir, a éistance L from the downstream bouhdary.

- The reservoir bottom slope, So’ is constant and defined as

So‘%' e, e, . el (G)



FIGURE 2. RESERVOIR CROSS SECTION WITH EARTHFILL DAM



"7 MNOt1d

tiojjog Jil0Asesey

X yooaig-Ad

40 uoybiju| Jo
8%0JING J9)DM



FIGURE 3. IDEALIZED RESERVOIR
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where n is the height of the dam and L' is the distance from the down-
stream boundary to the intersection with the reservoir bottom of a

horizontal line drawn from the top of the dam, as shown in Fig. 3.

In this investigahion, L is defined as

' -
L KlL R I &)

ﬁhere Kl is a constant.

Breach Geometry and Dynamics. - The breach is assumed to commence
forming at the instant the maximum capacity QO of the emergency and/or
principal spillwav is exceeded and the dam is over-topped. Referring
to Fig. 2, the spillWay is located at an elevation nsp’ and the breach
is assumed to form as a "V" where the acute central angle ¢ of the
"V-breach" remains constant throughout its formation. This breach
geometry is assumed to approximate that caused by the over-topping of
a homogeneous earthfill dam (31).

‘The breach forms at a rate denoted by A, which has'dimensions of
fps, and is defined as the vertical distance traversed by the bottom-

most point of the V-breach during an increment of time. Two basic.

types of failure rates, X, are investigated herein. The first type is

A=) T A € )

Cc

where AC is constant for a particular interval of time during the fail-

ure or for a particular span of vertical distance within the dam; X_

. , . v
may be expressed as a step-function of either time or elevation. For the
other type of failure rate, A is assumed to be an exponential function of

the head on the V-breach, where the head is defined as (yd - nv).

Thus,
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A = exp [Ke(yd—nv)] B @)
1n(l+Am)
where K = T e Seesrrsascascvens . (8)
) ydm

and yd’is the transient reservoir depth at the downstream boundary,
nvis the elevation of the bottom of the V-breach, and Xm and Y4m 2F€
fespectively the maximum failure rate and reservoir depth at the
‘doﬁnstreaﬁ boundary when_nv = 0. When the bottom point of the V-breach
is in contact with the erosion retarding layer, the failure rate is
significantly reduced to a value of A/Kk’ where Kl is a coﬁstant
greater than unity. The top of the erosion retarding layer is denoted

as Ny,» the bottom as Mg and the thickn?ss as N, ..
NUMERICAL SIMULATION MODEL

Dimensional and Geometrical Consdideraticns. - The St. Venant
equations are nondimensionalized herein by defining the following

dimensionless variables

* * *2
) cl(cly -2¢,y +e,y )

*
n (clfcz)(cl—2c2+2c2y )

N * ) *+ %7
_ (eg=2epteqg) (egy —2c,y +eyy )

*
n (cl-cz)(cl-2c2+c3y )

_%-, c, = zn, and c; = 20/ 22 (12)

in which ¢

1 2

and T is the ratio of the reservoir top width T to the reservoir length

‘L. The n subscript indicates that the subscripted variable is evaluated
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*
at the downstream boundary when t = 0,.r1v = n. The superscript

is used henceforth to denote a variable as being dimensionless.
Substitution of Eq. 3 along with the above dimensionless variables
into Eqs. 1 and 2, taking care to properly express the partial derivatives,

yields the following dimensionless form of the St. Venant equations

* * *
) * Jv * g
—L*+K1D Lty Tl;=0 e, e (13)
at 9x 9x
% K I *I *
v v ay 3V v
—_+ — + K + - K [ (14)
* *
3t s 2axt  RY4/3 4
(c,-c
where K, = L.z ... e eeee e et e c e ettt e et e (15)
1 c
1
gn (c;-c,) ‘
K, = ; 2 T e, e, (16)
Q
Q
Ky =H=rmm | e T (17)
2.21n 1 72
g5 Ln’ (e mc))
K4 e e ittt e es it e ce e et et et (18)
q 2
(o]

The following dimensionless variables are defined in order that

the boundary conditions may be expressed in dimensionless form

Q . Q
* AL _ * "y * 4
A Qo (cl c2) , Qu' 'Qo , Qd q e ...(19)



14

The Q and d subscripts refer to the upstream and downstream boundaries,
respectively.

The above_normalizing procedure allows y* and n*v to take on vaiues
from unity to zero and v* and Q* to assume values relative to an initial
condition of unity. Also,'this procedure allows the initial flow Qo
to be expressed in terms of the dimensionless failure rate A*; This
normalizing procedure is utilized for convenience in the presentation -
of results.

Initial Conditions. - Immediately prior to the initiation of the
breach, the depths and velocities along the reservoir are those of a
steady, gradually varied flow having a flowrate of Qo' The flow pro-
file is either Ml or S1 backwater curve depending upon So being either
mild (See Fig. 3) or steep, for the steady flow rate Qo' In either
case, the flow is subcritical in the portion of the reservoir with
storage that contributes to the outflow when the dam is breached.

Referring to Fig. 1, depth and velocities at 8x intervals of
length along the reservoir may be computed from the steady, gradually
varied flow equation (5, 15) which expressed in difference form, is

6(z+v2/2g2 -5 -5

5}( ) o faooooo.‘ --------- s e e e s 0 s 0000 .

where Sf is defined as the average friction slope along the &x reach,

i.e.

(s, +S. )
fI fII

S¢ = — PP @)

Substitution of the previously defined dimensionless variables and

Eq. 22 into Eq..2l and rearranging, yields the following dimensionless
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equation
* * * * 2.10/3 * * *2.4/3
(Fg+y ey =2¢,y ;Hey 1) 6, (eyy [=2c,y (te,y 1)
-G, (c,~2c + * )4/3=0 (23)
p(eg=2e,+eqy ft et et r e e ee e ettt
in which
g Nn II x % * 2,2
(ey 1172¢,y ey 11)
*  4/3
) G2(c1-2c2+c3y II) 26
( T > = " = 2)10/3 ..................... .
€Y 117%Y 117%Y 11
2
Qo
Gl i R R I B I R R R . ® e e a2 s e (25)
2gn
2 2
nLe,
G, = creeen Cetereeeteeeseenne e ceereeeae (26)
2 4 42an3/3
and N is the number of §x reaches along the reservoir, i.e.
N = L
N = Gmt ittt rerreeeeiaatiiin, ce et (27)

If Y*II is known, Eq. 23, has only one unknown variable, y*I, which
may be deterfiined by Newton's Iteration Technique (10, 11).

The Newton Technique is an iterative method for solving a nonlinear
equation of the form, f(x'5-= 0, by generating a sequence of successive
approximations which, if a proper initial value of x~ is used, converges

to a desired root of the equation. The recurrence formula is

f(x’k)
xk.+l=x.k - 'f—‘(-;rl:)—.. ........................... (28)
. .y - df ' . , th
in which f7(x k) = i and the k and k+l subscripts indicate the k

k
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and (k+1)th approximate values of the desired root (6).
*
The first 6x reach, for which y I is sought, is located immediate-
*
ly upstream of the downstream boundary, hence y 1= 1. The first

, ) * * *
approximation for y I is simply taken as y II° After y I has been com~

*
puted to within a prescribed error tolerance, v I is computed from the

following
: (c,-c,)
* 1 72
v o= T = — B ¢1°))
(e1y p=2¢py p¥epy 1)

Proceeding upstream from the downstream boundary, depths and
velocities are computed for sections located at 8x intervals along the
reéervoir, by replacing the value of Y*II in Eq. 23 with the recently
computed y*I and repeating the above procedure. This process is re-
peated until all desired values of y* and v* are determined. These
become the initial conditions which are necessary to start the proce-
dure for solving the St. Venant equations.

Steady State Patrametens. - The following steaay state dimensionless
parameters are used to monitor the type of flow regime at the upstream

boundary

* _n o+ _ e * _ s
yn n yc n ) n

where Yo is the normal depth, Ye the critical depth, aad Vg the
sequent depth of the normal.depth Yo all for a steady flow of QO.
. *
The normal depth y n is obtained by applying Manning's equation to

the flow at a section. Thus,

‘ * 273 x % x2 5/3
177 (epm2epteqy D77 = leyy =2e,y 4eyy :yﬂ =0

et ettt eeee e et eteiiaeiea ees..(31)
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*
which is solved for y n by Newton's technique where the first approxi-
*
mation for y a is determined by tacitly assuming the reservoir is a

wide channel. Thus,

* Qorl 3/5

y = ]
n 1/2
1 1.495O (cl-c2

Y 2 B (32)

Upon applying the principle of minimum energy (5) to a flow cross
section, the following eﬁuation is deVeloped

Q

o) * 1/
/7 (e172ept2e,y )

2 %* * * 2 3/2
- ) =
[(Cly'c “Cy C+c2y c n] 0

*
where Eq. 33 is solved for y c by Newton's technique with the first
*
approximation for y . taken as

* Qo ] 2/3

y . =1 gl/ I (34)

2(cl—cz)

SO is mild and the initial backwater curve is the M1 tybe if

* *

Y 4 >y C ttrerrereeeecans C et ettt it (35)

So is steep and the  backwater curve is the S1 type if

*. *

y < C trrreeeeneeen. et e bttt ettt e eee..(36)

When the latter condition prevails, the upstream boundary is reposition-
ed downsﬁreaﬁ such that the depth y*u exceeds the sequent depth, y*s.
In this way, the flow in the portion of the reservoir, for which the
St. Venant equations and boundary conditions are applied, is subcritical.

This procedure introduces negligible error into the simulation model,
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since the sequent depth is quite small for all reservoir sizes and
flowrates of practical interest. If it should be desired to simulate
both the supercritical and subcritical flow upstream and downstream
of the moving flow discontinuity (hydraulic jump) at the upper end of
the reservoir, an explicit numerical technique known as the Lax method
(11, 29, 30) can be used to solve the St. Venant equations when they
are expressed in their "conservation form'.

The sequent depth y*s is determined by applying’the momen tum
pfinciple (5) to the discrete section of the reservoir at which a

discontinuity occurs. Thus,

Qz *
0 2 %2 %1 €Y s
— o+ —) - =
(c * 2e * ey 2) TN g w2 3 ) fs 7O
gnic,y s 29§72

I 7))

2 - *
Q c c,y
B 0 2 %2 71 27 n
where Ks = ( = o *‘+c * 2) +ny n (2 c2+ 3 ) _
en ClY ZY 2Y
....... P 1))

*
Eq. 37 is solved for y s by Newton's technique with

* / 8q 2v" 2
* y v !
A A T - D .(39)

1 sn(cl~c2)yn
(c,=c,)
where v* = 1 2 = ) tcreerectesieciecacecaann (40)

» N (c 2¢ +c 2)

1Y 2y 29 n

Numenccal Solution of St. Venant Equations. - The St. Venant

equations defy a closed-form solution; however, they may be solved by
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numerical techniques such as the explicit method (3,7,11,13,14,16,18,
21,22,26,27), the implicit method (1,3,7,18) and the method of charac-
teristics with a characteristic network (2,3,7,9,11,17,19,28,3%) and a
rectangular network (4,8,19,23,28,33). Each of the techniques offer
particular advantages and disadvantages (ll,iB). The method of charac-
teristics with a characteristic network is used herein because of its
inherent numerical stability and the ease with which boundary conditions
may be introduced into the solution procedure. Also, the prismatic geo-
metry of the idealized reservoir and the desirability of obtaining
solutions at only the upstream and downstream boundaries lend to the
‘selection of the method of characteristics.

Characteristic Equations. - In the method of characteristics, the
two St. Venant partial differential equations are converted into four
ordinary differential equations, called ''characteristic equatioms",
which may be numerically integrated subject to specified boundary
conditiéns. The conversion 1is accomplished by forming a linear com-
bination of Eqs. 13 and 14 through the use of a multiplier, ¥ (4,11,

19,24,27,28). Thds,

* *
Co B A S ) AL S L A A
1 * * * 2
ot 9x ox ot ox ox
*,
K3[v [v
R*4/3 K, =0 e aeeeetararetee i (41)

»

*
Upon rearranging Eq. 41 such that partial derivatives of y and v

are grouped separately, i.e.



oy SLINE 5y 3y
v g
VIR 00 =) SR [ ER e (v k) Ty ey
ot ox ot ox
*x, ok
K3|v | v
—— - e 42
(=73 &) =0 (42)
R
, d *-
The bracketed quantities may be made total derivatives, i.e. —V—*~ and
*- . .
d dt
*,
dt
K D* *
*.
1f N TP PR (43)
v
dt
* * :
and v + Ky = R (44)
AR * :
' dt
The simultaneous solution of Eqs. 43 and 44 yields Y. Thus,
K.D
T (45)
)

- . l *i *
N v v
2 d 3
-/ + - K, =000, (46)
* *
KD N 4/3 4
1
C..
* X * (47)
v - 1 2D ...........
o a . K *I *
/ KZ d 3IV M =
+ — e &Y 2 K, = 0. (48)
.k *4/3 4
K.D dt R
1
C+
= v+ kD" (49)
=v <+ 1 2D ......... veeene
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E@s. 46 and 47 are associated with the C- characteristic curves
in the x*—t* solution plane, shown in Fig. 4; Egs. 48 and 49 are assoc-
iated with the C+ characteristic curves. It 1s noted that Egqs. 46 and 48
contain no partial derivatives; however, the additional Eqs. 47 and 49
are required since Eqs. 46 and 48 are valid only along the curves defin-
ed by the dx*/dt*‘expressions; All four equations aré valid at inter-
section points, such as p, in the x*—t* plane. Thus, if the values of
x*,t*,y* and v* are known at points, 1 and r, a numerical integration of
the equations will produce the values of x*,t*,y*, and v*"at point p.

In this way, the values associated with all intersection points in the
x*—t* plane are determined sequentially from left to right while pro-
gressing upw;rd in the t*—direction.

The numerical integration éf ﬁqs. 46-49 may be accomplished by
various finite-difference approximations with different orders of
accuracy (2,3,11,19,29). It was found that a siﬁple first-order approx-
imation of the form

*
X

[P fydx f ) %" ) (50)
, (x )dx — (x r) X p—x D RAEEEER TR

r

* * *
provided sufficient accuracy since the variation of v and y with x

*

and t is relatively small for a flow produced by a gradual breach.
Upon applying Eq. 50 to Eqs. 46-49 and rearranging, four equations,

which are linear with respect to the variables at location p, are ob-

1

tained as follows
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FIGURE 4. x -t PLANE WITH CHARACTERISTIC NETWORK
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F L Ey v (-t )0 (51
v p-v Ty p—y r 3 . . e heececearteeratan e )
*_x o ( *  *x ) .
X p—f ) t p-t c PR cee e ..(52)

* * +F * * +F * % )=0
VoV S(y >y l) 6(t p-t 1 B ¢ )

* *-F * *) C+
xp—x 1-— a(t p—t RS ..(54)

* é * '
where F.=v - KD viiiiennnn it et (55)

1 r 127 r
/ K,
Fy =Y R R e (56)
KD
K * l * I
_ MRS
Fy S a3 " Ky e N €7 2
R
r
FQ =v, + /éleD 1 et ee s ee e ettt ..(58)
K
2
F5= " = et eereeeaaa e et e (59)
1P 1
v v
R ME LA
Fo = g T Ky et (60)
Ry

* *
Substitution of y 1 and y . for y*in Eq. 10 and 11, provides the values
* *

‘ * *
of D 1’ D " R 1 R "
Upstream Boundary. - The V-breach is assumed to occur during a
short duration of time relative to the time base of the reservoir in-
flow hydrograph. The inflow occurs only at the upper reach of the .

idealized reservoir such that the reservoir is not subjected to any

lateral inflow. Hence, the inflow to the reservoir may be considered



relatively constant throughout the formation of the breach, and the

upstream boundary condition is expressed as a constant inflow, i.e.

Q, = Qu(t) i S R ERETRERE S (-2 B

Thus, from continuity considerations

*
* Q u(cl-cz)

v e R e reee e e et ... (63)

u * ) * +
(cly u c2y u c2y u )

25

*
The value of x u is known since it represents the location of the up-

' *
stream boundary; hence, t 5 may be computed from the C- Egq. 52,

x -x" )
X =X

u . F Ceeeerereee e B (1Y

1

Substitution of Eq. 63 into the C- Eg. 51 yieids

F -F.y" * eyt 4oy HH" =0 65
( oFoY u)(cly Go2CY JFeoy )+HQ u(cl—cz)— cereeees.(65)

where the uo subscript is associated with the previously computed up-

: *
stream boundary point shown in Fig. 4. The value for v a is computed

from Eq. 63.
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X k% *
Intenion Points. - The unknown values of x ,t ,y and v at any

interior point designated by a p subscript may be easily obtained from
the simultaneous solution of the four linear Egs. 51-54.

Thus,

x  * +F * F * )
R Nl b Gl A (68)
0 (Fl-FA) et et e teteeerens e
% +F x x _
xp‘xl Atp-t l) c.ooo..oocoo'-to000!001---.....(69)
x % +F * . % +F * * V- ( * %
y*» _ [v 17V 5% ¢ FSy 1 3(t p—t r’ 6 £t l)] (70)
p : (F2+F5)
X & * % * % ) (71
v > = v l-FS(y p-y l)-F6(t p—t TLEERERRE R R TEREEE . )

Downstream Boundary. - The location of the downstream boundary is

known; hence,

* 72y
X 4= 1 Cee e e sttt ac et e te e N 23
*
and t 4 may be computed from the C+ Eq. 54, i.e.
(x" ~x*)
* * *X49*
tg=t, + F4 ........... e e (73)

The downstream boundary condition is given by stage-discharge
relationships for the spillway and the V-breach. The elevation of the

*
spillway crest n s is constant, however, the elevation of the bottom

*

* _ *
102 N oip? and A . The

. A
of the V-breach n v is a function of td’ n

' %
following step-functions express this variation of n v

If n >n

~ x k%
then n_=n - A (t -t o)......... ........ I )



27

* *
however if n v <n Lp rrererereeeeees .o cesasnen .o veeesa(76)
, A" - )]
th * - * - [Ae d” n vo_n 1t 7
en n,=N g, KA ....................
1f * e 78
Ny SNy Ny, et eeeeteee e et .(78)
h X x A* x  k )
then M, =N~ Kx (t L R LR LEEERTRTR R ...(79)
h £n* <n 80
owever if n v SMgp rrereeeees e eeaeecnssetsaaeenans cvesene..(80).
N % A* * < * * ‘ (81'
then N, =Ny - At P A(n vo N lb)].... .............. )
If 0o<n_ <n (82)
SN yg SN p srerrmrreeoseneennes et eecenaaaas
h * _ * )\* 83
then n, = n vo " (t d-F do) ........................... (83)
*
however if n v C 0 teeeenneneeeessoasansasenanossas et et (84)
*
then n v " Ot vseteneneoeneasessesassonsonassssossnsssanas (85)

The second subscript, o, indicates that the subscripted variable is the
previously computed boundary point as shown in Fig. 4.
The velocity at the downstream boundary is expressed in terms of
the discharges of the spillway and the V-breach, and the reservoir cross-
section, i.e.
, x % 5/2

55 4N + K'KG(y*d-n* )3/2](c1-c2)
v = = ... (86)




if

and

if

and

where

* N *
Y 4 n Gp TTTTTTUTTeTTereeieeiiiiiiiiiiiiiiiiiiiaa,
e
* e *
Y 4 n gp ttrerteee 0000000000000 60000000008E000a000
5/2
KS =Ccn 0
_ 3/2
K6 = cspn /Qo .....................................
C = 4.28 ¢ tan ) 8000000006600 0000000000000080aan
v v
- B * . 3/2
Csp = 5,36 CspLsp = QO/[n(l n sp)} ...............

Substitution of Eq. 86 into the C+ Eq. 33 vields

5/2
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d+Fd)

*
' -
+K K6(y 4 )

" x %
5(y a v) sp’ (cl-cz)

* - * 2 *
* 13/2, (e1y 4=2¢,y grey I (F,y

*
Then, v d is computed from Eq. 86 and the reservoir release discharge

* :
Qg

s computed from the following

* 2

* * *
x v oglegy gm2¢,y gre,y 9

Q , .= IS5y 0 0000000080000 80500 00000
d (Cl c2)
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Optimization of Retarnding Layen Location. - When a dam does not
have an erosion retarding layer, the maximum possible reservoir release
' Q*dmp due to a breached dam occurs at n*vmp which may be at any eleva-
tion within the dam; this elevation depends upon the magnitude of the
reservoir surface area, bottom slope, the failure-rate A and Cv' *
When Q*Amp occurs, the two factors controlling the rate of discharge
through the breach, namely the head (y*a—n*v) on the breach and the flow
area of the breach must assume their maximum simultaneous values.
Thereafter and until practically all of the storage above y*n 1S releas-
ed, the reservoir surface level Y4 decreases since the reservoir out-
flow Q*d exceeds the reservoir inflow Qu'

The optimum elevation n*itOp of the retarding layer is defined
herein as that elevation which miﬁimizes the maximum reservoir outflow
Q*dm' Thus, by optimally poéitioning the retarding layer, a maximum

*

reduction in Q dmp is achieved. Such a reduction, denoted as QR, is

defined as a percentage reduction, i.e.

* *
Q -Q . )100
R = —3 A (99)
Q dmp
' *
An iterative procedure is utilized to determine n 1t0p within an

) *
acceptable accuracy. 1Initially, the breach is simulated with n it

' *
equal to zero, i.e. the dam does not have a retarding layer; and Q dmp

is determined. Then, the breach is simulated with the retarding layer

positioned at n which is defined as
- 1t
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where the k subscript denotes the number of iterations using an

: * * =
incremental increase of 6n le? and n 1. =N . The simulation of
1

*
the breach, with the retarding layer positioned at n is continued

E ]
1t

* *
vmp since all subsequent Q 4 Must be less than that

*
until n v <n
* *
occurring when n v has reached n vmp” When the dam has a retarding
. * * *
layer that is positioned above the n v at which Q dmp occurred, Q dm
will be less than Q dmp since the retarding layer allows the water

level in the reservoir to recede while the area of the breach remains

*

*
relatively constant. Thus, Q dm will occur at some n v which is greater

*
than n
L * .
‘The reduction in Q dmp’ denoted as QR, is a funciton of the posi-

*
tion n of the retarding layer. A typical relationship between QR and

1t
* : *

n 1t is shown in Fig. 5. The function, QR = QR(n lt), was investigated
for a variety of reservoirs parameters (L, n, Qo’ A, etc.) and was
found to contain only one maximum value. Thus, the difficulties en-
countered when a function contains more than one maXimum (peak) is

*
avoided in the iterative search for n .

: 1e0p
* .
Using an incremental increase 8n Lt? QRk is computed for each

nltk position of the retarding layer until QRk+l is greater than QRk'
When this occurs, as noted in Fig. 5, QRmax and the corresponding

*
less than n 1t

k+1
QRk+3 are computed, and the final location of QRmax is easily obtained

* *
n 1tOp exists for a value of n Then QRk+2 and

le

. graphically by extending émooth curves through all the computed points

. .
(Qr, n l.tk).

Mod{fications to Medelf. - Modifications may readily be made to the

above numerical simulation model to accommodate reservoir geometries,
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FIGURE 5. TYPICAL VARIATION OF THE PERCENT REDUCTION (QR) IN
THE MAXIMUM POSSIBLE RESERVOIR RELEASE WITH THE

: *
LOCATION (n 1:) OF THE EROSION RETARDING LAYER
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bottom slopes, breach geometries, upstream and downstream boundary
conditions, and breach dynamics which differ from those treated herein.

Rectangular or triangular reservoir cross sections may be simulated
by letting z=0 or z-L/(ZTn),/reSpec:ively. Other cross-sectional
gedmetries may be handled by properly defining A, D, and RT The
reservoir bottom slope S0 may be defined other than by Eq. 4 and thus
be independent of n and L. Breach geometries, other than a V-shape
may be simulated by defining the cross-sectional area of the breach as
a function of n*v |

A principal spillway and/or a different type of emergency spill-
way may be incorporated into the downstream boundary condition by
defining their respective stage-discharge relationships and elevations.
The discharge coefficients Csp and Cv of the spillway and V-breach may

be expressed as functions of Yq» Ngps and or n, rather than assumed

sp
to be constants.

The upstream boundary condition may be changgd to a stage or dis=-
charge hydrograph by specifying the relationship between the upstream
stage or discharge with time.

The initiation of the breach may be defined so as to occur when
the depth y*d at the downstream boundary exceeds n* by a specified

amount. The failure rate X may be described by various mathematical

functions other than Eqs. 5 and 6.
EXPERIMENTAL SIMULATION MODEL

An experimental simulation model was developed to check the accur-

acy o the numerical model. A vertical dam, consisting of two adjacent,
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metal plates, was installed near the midpoint of a 40 ft. long by

2 ft. wide Plexiglas flume. The thin metal plates were shaped such
that a V-opening was formed at the centerline of the dam when the plates
were moved in opposite horizontal directions parallel to the flume

cross section. The ¢ angle of the V-opening (breach) remained constant
throughout its formation and gradual enlargement. A magnetic clutch
Provided an instantaneous application of a variable speed drive-unit

to a cable-pulley system which pulled the metal plates apart. This.
System permitted the V-breach to be formed at any desired rate A from
0.0 - 0.15 fps.

The simulated reservoir formed by the two-dimensional metal dam
was of rectanguiar cross section having a depth Y4 of 1.704 fr. at the
dam. A steady inflow QO was introduced at the upstream end of the re-
servoir and the same quantity was released from the reservoir through
a small V-opening at the top of the dam. This outflow simulated the
steady spillway discharge assumed to occur prior to an over-topping
failure. The V-opening was enlarged at a known rate A; this simulated
the formation of a gradual V-shaped breach. A timed-pause in the forma-
tion of the V-breach simulatgd the effect of an erosion retarding layer.

The discharge coefficient Cv of the V-breach was determined for
numerous steady flows at various settings of the metal plates -so as to
provide steady state discharge coefficients which spanned the entire
range of possible V-openings (nv} and heads (yd—nv) on the V-breach.

The discharge coefficient was found to vary with both nv and yd. This

variation was expressed in the form

y -,
e N S (101)

¢ =K (
v cl ﬂv
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where KC varied from 1.580 to 1.634 and KcZ varied from 0.001 to

1
0.098; both are functions of (yd—nv) and n,-

Timers and staff gauges, positioned at stations 1.00 and 10.00 fc.
upstream from the dam, were continuously monitored via movie cameras.
This provided stage hydrographs at the selected stations. ' Total out-
flow Qt from the reservoir was determined for a specified duration of

time-tf after the time tO at which movement of the metal plates was

initiated. Thus,

NUMERICAL RESULTS

Comparison With Experimental Rmm. - The numerical simulation
model provides results which are in satisfactory agreémgnt with the
experimental model. A typical stage hydrograbh for station 1.00 is
shown in Fig. 6 along with the stage as computed by the numerical model.
The percent standard deviation Cyd between the experimental and numeri-
cal yd is 1.17%, and for all experimental runs, :vd is 0.83%. The
computed outlet discharge hydrograph associated with the stage hydro-
‘graph is also shown in Fig. 6. Total outflow, as computed by the
numerical model, 1is determined by numerically integrating the dis-

charge hydrograph. The percent standard deviation ¢ between the ex-

qQt
perimental and numerical total outflows is 5.1% for all experinental

runs. Additional experimental-numerical stage and discharge hydrographs

for this study are presented in reference (12).
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FIGURE 6.

STAGE AND DISCHARGE HYDROGRAPHS OF EXPERIMENTAL

"RUN NO. 5
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Retarding Layen: Optimal Location and Reduction in dutflow. - Upon
applying the numerical simulation model to a range of reservoir sizes,

H
dam heights, initial flowrates, and dam failure rates, prediction curves

*
are obtained for the dimensionless optimal elevation n 1e0p of the

ercsion.retarding layer and the extent of its reduction QRmax in the
reservoir outflow. The results are functions of the parameters used
herein to describe the transient hydraulics associated with the gradual
V-breach of an earthfill dam. These parameters consist of the folloﬁ—

ing: geometric parameters (L, K T, N, N__, and 1, ,); hydraulic para-

1 sp "'1d

meters (QD, n, CV); and dynamic parameters () and KA}'
* : .
The values of n .. and QR are expressed as functions of the
1t0p max
* .
dimensionless failure rate X » as defined by Eq. 19, and for specific

*
values of L, T, Ac’ n, and KA' The prediction curves for n 1t0p and

*
QRmax are applicable for the "fixed parameters', Kl=l,2, z=2, 1 Sp=0.95,
*

n ld=0;02, n=0.03 and CV=2.2. The sensitivity of the prediction curves
- to variations in these fixed parameters is examined in a following

section,

*
Prediction curves for n and QR are shown in Figures 7-12
1tOp max

1

for specific values of L, T, KA and lc. The following cxample illus-
trates the use of the prediction curves:
When QO=2,OOO cfs, L=10,000 ft, =10, ~=100 ft,

=0.02,

* *
= = _ o] P = -
Ac 0.0l fps, Kh 100, K,=1.20, z=2., n'sp 0.95, - 1d

1
' *
n=0.03, and C¢=2.2, the optimum elevation n Le0p of an erosion

retarding layer and the corresponding reduction QRmax in the

maximum possible reservoir release may be obtained from Fig. 8,

* *
First, X is computed from Eq. 19, i.e. A = _(looggéé.m)

[iQ%gQ = 2(100) ] = 40. Then a line is extended vertically from
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) *
FIGURE 7. RELATIONSHIP BETWEEN QRmax AND n 1t0p

* .
VALUES OF X AND L=10,000 ft., 1=10, lc=0.l fps

FOR VARIOQUS




40
—e
60.} _
: — ”'ltOp
- == =QRpqx
sol o MN=50 f¢.
0. o M=|00 ft.
|
1
100 | -
& ' —160: ———— = ’
N 1000. 10000.

FIGURE 7.



41

' *
FIGURE 8, RELATIONSHIP BETWEEN QRma- AND_n

x 1t0p FOR VARIOUS

. ;
VALUES OF A AND L=10,000 ft., t=10, AC=O.01 fps




|5' _Iﬁ l/ | | |
K 0. . 100. 1000.
A
FIGURE 8. '



43

*
FIGURE 9. RELATIONSHIP BETWEEN QRmax AND n 1t0p FOR VARIOUS

*
VALUES OF )\ AND L=10,000 ft., T=10, lc=0.005 fps
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*
FIGURE 10. RELATIONSHIP RETWEEN QRnax AND n

1t0p

FOR VARIOUS

*
VALUES OF X AND L=2,000 ft., 1=4, AC=0.1 fps
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FIGURE 11. "RELATIONSHIP BETWEEN QRmax AND n FOR VARIOQUS

1tOp
*
VALUES-OF A AND L=2,000 ft., 1=4, 1,=0.01 fps
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- FIGURE 12. RELATIONSHIP BETWEEN QRmax AND n

1t0p FOR VARIOUS

*
VALUES OF A AND L=2,000 ft., t=4, Ac=0.005 fps
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FIGURE 12,
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*
the abscissa at A =40 to intersect the curves pertaining to
KA=100 and nN=100 ft. as shown in Fig. 8. Finally, the values

* : . : . .
of n 1t0p and QRmax are obtained by extending lines horizontally

*
until they intersect the appropriate ordinate axis, and n 1t0p

and QRmax are reéd as 0.463 and 45.8%, respectively.

*
Upon examining Figs. 7-12, it 1is evident that n 1t0p

varies directly with n and KX and inversely with L and kc. Also, in

significantly
all except Fig. 7, n*ltOp varies directly with A*.

If the failure rate Ac is very small and/or L is small, say L=
2000 fc., the reserveir depth as determined by the.numerical mode 1
recedes at an increasing rate as the V-breach forms. Under this condi-
tion, the maximum possible reservoir release Q*amp occurs when the rate
at which the depth is receding exceeds the failure rare AC, i.e. Q*dmp
occurs considerably before the breach achieves its maximum size. Hence,
n*ltOp May assume values in the range of 0.60 té 0.75. Under this same
condition of small values of AC and/or L, the elevation of the erosion
retarding layer is critical since it is possible for the layer, if in-

- * * *
correctly positioned above n vap’ to cause Q dm to exceed Q dmp*
In Figs. 7-12, QRmax assumes values in the range of 10 to 65%,

This indicates that significant reductions in the maximum reservoir
release from gradually breached dams may be achieved by the presence of
an erosion retarding layer which is optimally located. The extent of
the reduction‘QRmax is primarily related directly to the resistance of

*
the layer to erosion, i.e. K,, and to ) .

A

*
Prediction curves for n 1c0p and QRmax are shown in Figs. 13 and

14 for specific values of L, 1, n, Kl’ Am’ and Ydm® In these, ) is
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) *
FIGURE 13. RELATIONSHIP BETWEEN QRmax AND n 1t0p

*
FOR VARIOUS VALUES OF ) AND L=10,000 ft., =10,

A,=0-1 fps, Ygp=0:97 (n=50 ft.),\_ydm=0.91

(n=100 ft.) AND A IS AN EXPONENTIAL FUNCTION




FIGURE 13,
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*
FIGURE 14. RELATIONSHIP BETWEEN QR AND n
max 1tOp

*
FOR VARIOUS VALUES OF A AND L=10,000 ft., t=10,
km=0.0l fps, ydm=0190 (n=50 ft.), ydm=0.58

- (n=100 ft.) AND X IS AN EXPONENTIAL FUNCTION
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aséumed to be an exponential failure rate as described by Eq. 7. The
Prediction curves in Figs. 13 and 14 are similar to those in Figs. 7 and
8, respectively. The exponential failure rate produces values of
n*1t0p and QR which are apprcximately 10% greater than those
computed for a constant failure rate. In Figs. 13 and 14, QRmax assumes -
values in the rangé of 10 to 75%.

Sensitivity to Variations in Fx;x.ad Parnametens. - The sensitivity

* .
of the n and QRmax values, as presented in Fig. 8, to variations

1t0p
in the values of the "fixed parameters” is shown in Table 1. The
variations in the values of the fixed parameters span the practical
range of each. The sensitivity is determined as an average percentége
*

change in the values of n 1t0p and QRmax as determined with the fixed
' parameters having the values designated in the Preceding section.
Variations in K

*
10 N sp’ z and n result in changes of about

% :
10% or less in n and QRmax' Variations in T and Cv pProduce

1t0p
*
more significant changes in n 1t0p of approximately 12 to 30%. Also,
as noted in Table 1, variations in T and CV produce changes in QR
* .
of approximately 15 to 38%. Variations in n 1d result in significant
N .
changes in n and QR when K, = 100 and n = 30 ft; however,
1t0p max A
the changes are not significant when KA = 500 and 1 = 50 or 100 ft.
Computatici Time. - The maximum computation time C. in seconds,
which is required for the numerical model to determine the transient

hydraulics.for a particular set of geometric, hydraulic and dynamic

parameters, may be approximated by the following
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*
TABLE 1. SENSITIVITY OF n 1t0p AND QR TO VARIATIONS Iy
* *
K» M1q> N gp» 25 T» C AND n FOR L=10,000 ft.,
=10, X =0.01 fps
" Fixed Value | KJ\ [ A:.:g. Percentage ] Avg. Percentag-é“__
| * .i ,
Variable ;‘_Yi?%atién inn ltOp__! Variation in QRmax
_ - n=530 fe.  n=100 ft." | n=50 ft.  A<100 fr.
1 I[ ! i !
o @ @) ®
1.1 . 100 = -12.4 +9.1 | +14.0 +8.5
. I 1.3 100 | +1.3 + 0.2 ’ - 2.1 + 8.3
1 1.1 500, + 1.9 +12.9 . +10.0 + 2.5
| 1.3 500 ¢ + 5.3 - 7.5 i = 2.6 + 2.3
| 0.01 100 © -28.8 | - 1.9 L -10.7 - 4.2
* | 0-05 100 . +18.5  +38.0 L+17.3 +17.3
"1d o001 ' se0 | -6.7 - 1.5 P+ 1.8 + 5.0
] 0.05 | 500 +2.6 ' +0.9 |+ 6.0 +15.6
5 _ - ; :
| 0.900 100 | - 6.5 +0.5 |+ 1.5 . +4.2
* i 0.975 100 | -14.0 + 3.6 | *le.5 0 +6.3
Tsp ! 0.900 500 | +18.0 . -10.5 S S UL R W
£ 0.975 1 500 |+ 2.7 +18.2 | *t2.9 | +3.5
r ; , ;
i 0.0 100 -11.5 - 5.4 | -5.8 | 4136
) 4.0 100 © -5.8 . +18.0 |+ 1.6 + 6.2
0.0 500 © -1.2 ¢ - 2.8 - 7.2 +9.8
4.0 500 . + 4.6 + 0.5 I +13.3 - 2.6
1 0.02 100 - 7.3 + 1.8 R W + 6.1
' 0.06 100 - 5.7 + 1.9 { +18.0 + 2.4
. 0.02 500 + 1.0 + 1.1 o+ 4. + 5.0
. 0.06 . 500 ' + 1.4 + 4.0 | +11.9 + 5.3
l
. I 5.0 100 -20.0 -16.6 'o-17.0 +37.6
| 5.0 500 +17.2 - 7.0 L -l4u4 +38.1
C 1.0 100 -25.5 -24.0 L =373 +21.7
v 1.0

500 5.5 - =36.3 : -12,2 +13.3
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C,=C +K C T....... Cenreatesrraraes Ceaencrsearae (103)
N Qo // gn(cl cy) -
where To= 5o | nle-c,) + ) In + ny (K -1)1..(104)

‘and Cp is the cogstant compile time, Kop is a multiplier which reflects
the additional computation time required when the retarding layer
optimization procedure is utilized, and th is a constant. When the
computations are performed on an IBM/360 computer, Cp=94 seconds and
th=0.020 seconds. If the retarding layer elevation is not optimiéed,
de=l; otherwise, KOP varies from 4 to 10 depending upon the magaitude

*

*
of (m 1t ).

Op ~ 1 vmp

SUMMARY AND CONCLUSIONS

A conceptual method to reduce flood wave peaks due to over-topping
failures of small homogeneous earthfill dams has been introduced. A
numerical simulation model based upon a characteristic numerical solu-
tion of the St. Venant unsteady flow equations is presented for pre-
dicting the transient reservoir flow produced by the gradual breach
of an earthfill dam.

The extent of reduction in the reservoir outflow from a breached
dam due to the presence of a hypothetical erosion retarding layer is
presented, along with the optimal elevation of the retarding layer, for
a wide range of pertinent geometric, hydraulic, and dynamic parameters.
The extent of reduction QRmax in the maximum outflow is primarily
related directly to the ratio of the failure rate of the earthfill dam
to the failure rate of the erosion retarding layer, i.e. Kk,and to the

*
dimensionless failure rate A which is defined by Eq. 19. This
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reduction can be as significant as 75%. The dimensionless optimal
elevation n*ltOp' which minimizes the maximum reservoir outfloﬁ due

to the breach, is related directly to the height n of the dam, KA’

énd A* and inversély to the length L of the Prismatic reservoir and to
the failﬁre rate A. The exponential failure rate produces values of
n*itOp and QRmax which are approximately 10% greater than those computed
when the failﬁre rate is constant.

Some sensitivity tests of the numerical model indicate that varia-
tidns in the ratio of the width to the iength of the prismatic reservoir,
i.e. T, and the coefficient of discharge C‘J of the V-breach significant-
ly effect the extent of reduction in outflow achieved by a retarqing
layer, as well as, its optimal elevation. Variations in the dimension-
less thiCRHESS'H*ld of the retarding layer produce some significant
changes in n*ltOp and QR%ax_as n and KA assume gmaller values. However,
variations in the ratio of the total length L' of the reservoir to the

length L of the prismatic portion of the reservoir, i.e. K the di-

ll
* . .

mensionless elevation n sp of the spillway crest, the side slope z of

the trapezoidal reservoir cross section, and the Manning roughness

*
coefficient n produce relatively small changes in n and QRmax

1eOp
When the prismatic reservoir length is small, say L=2000 ft., the

reservoir storage is depleted at a significantly increasing rate as

the breach forms. Hence, for failure rates of 0.01 fﬁs and smaller, the

reservoir. water surface may eventually recede at a rate which is faster

than that at which the breach forms. Thus, the elevation of the tip' of

the V-breach may be in the vicinity of n/2 when the maximum outflow is

attained. The optimal elevation of the retarding layer is located
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above this; and its location is critical since an incorrect position-
ing can cause the outflow to exceed the maximum that would occur when
no erosion retarding layer is present. When this condition exists
and n=100 ft., the reductibn in the maximum outflow is relatively small
as compafed to that achieved by a retarding layer in an earthfill dam of
a reservoir with a larger surface area.

The numerical model, as presented herein, may be uséd in its
present form or modified, as required, to investigate the transient
hydraulics of prismatic reservoirs subjected to unsteady flow intro-

duced at either or both extremities of the reservoir.
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APPENDIX II. - NOTATION

The following symbols are used in this paper:

A = Area of channel (reservoir) cross section
C, . ,C ,C_ = Constants used in evaluating computation time, C _,
kt t - t
in Eq. 103 :
sp,CV = Constants definad by Egqs. 94, and 93, respectively

C+,C- = Positive and Negative characteristics, respectively
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Discharge coefficients for broad crested rectangu-—
lar and V-shaped weirs, respectively

Constants defined by Eq. 12
Hydraulic mean depth

. * %
Subscripts denoting intersection points in the x -t
plane

Constants defined by Egs. 96, 24 and 66, respectively
Constants defined by Eqs. 35-60, respectively
Constants defined by Eqs. 25 and 26, respectively
Acceleration due to gravity

Subscripts denoting location along an elementary
channel

Experimental constants
Constants defined by Eqs. 8, 5 and 38 respectively
Constant used in evaluating C

Ratio of the failure rate of earthfill dam to the
failure rate of the erosion retarding layer

Constants defined by Eqs. 15-18, 91 and 92, respective-
ly

Length of prismatic secticn of reservoir

Length for determining SD, and defined by Eg. 5
Length of emergency spillway crest

Number of stations along reservoir

Manning's roughness coefficient

Wetter perimeter of flow cross section

Initial steady flowrate in reservoir

Flowrate at downstream boundary (reservoir outflow)
Maximum flowrate at downstream boundary

Maximum possible flowrate at downstream boundary



QR
QR

max

1b

1d
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Percentage reduction in Qdmp and defined by Eq. 99
Maximum value of QR

Total outflow from experimental reservoir from time
t, to tes and defined by Eq. 102

Hydraulic radius

Friction sloupe (slope of energy gradient) defined
by Eq. 3

Bottom slope of reservoir and defined by Eq. 4
Top width of free surface of channel (reservoir)
Time

Starting and ending times, respectively for experi-
mental runs

‘Average velocity in channel (reservoir)

Average velocity at downstream boundary when t = 0
Distance along channel (reservoir)
Unknown variable in Newton Iteration Technique

Depth of flow in channel (reservoir)

Critical depth for steady flowrate Qo

Depth of flow at downstream boundary

Normal depth for steady ﬁlowrate QO

Sequent depth of Y

Side slope of reservoir cross section

Very small increment

Increment of channel.(reservoir) length
*

Incremental increase in n 1t

Elevation of top of dam, with datum line at bottom
of dam ’

Elevation of bottom of erosion retarding layer.

Thickness of erosion retarding layer
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nlt = Elevation of top of erosion retarding layer
N eop = Optimal elevation of top of erosion retarding

P layer
Nep = Elevation of emergency spillway crest

n, = Elevation of bottom of V-breach when-t=td
n = Elevation of bottom of V-breach when t=t

vo _ do

€ = Angle of inclination of channel bottom with the
horizontal g

A = Failure rate of dam (rate of formation of the
V-breach)

A = Constant failure rate during a specified period of
time or interval of elevation, n,

A_ = Estimated maximum failure rate when nv=n

m
Gyd = Percentage standard deviation of Y4
GQt = Percentage standard deviation of Qt

= Parameter used in evaluating Ct and defined by Eq. 104
T = Ratio of initial top width T to reservoir length L

¢ = Acute central angle of V-breach

Y = Linear multiplier

* = Superscript denoting a dimensionless variable
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